BISHOP CHADWICK CATHOLIC EDUCATION TRUST

CALCULATION POLICY

Better Schools * Better Communities * Better Futures in Christ

INDEX

Better Schools * Better Communities * Better Futures in Christ

INDEX

CALCULATION	SLIDE
Number bonds of 5, 6, 7, 8, 9 and 10	5
Counting	6
Adding 1-digit numbers by regrouping	7
Adding 2-digit numbers using the column method	8
Adding 3-digit numbers using the column method	9
Subtracting ones	10
Counting back	11
Subtracting 1 and 2-digit numbers to 20	12
Subtracting 2-digit numbers using the column method	13
Subtracting 3-digit numbers using the column method	14
Multiplying 1-digit numbers	15
Multiplying a 2-digit number by a 1-digit number using the column method	16
Multiplying a 3-digit number by a 2-digit number using the column method	17
Multiplying a 2-digit number by a 2-digit number using the grid method	18
Dividing using the sharing method	19
Dividing using the grouping method	20
Dividing a 2-digit number by a 1-digit number using the sharing method	21
Dividing a 3-digit number by a 1-digit number by short division using the grouping method	22
Dividing a 3-digit number by a 2-digit number by short division using the grouping method	23
Dividing a 3-digit number by a 2-digit number by long division using the grouping method	24

Better Schools * Better Communities * Better Futures in Christ

INDEX

CALCULATION	SLIDE
Adding and subtracting positive and negative numbers	26
Multiplying positive and negative numbers	27
Dividing positive and negative numbers	28
Adding decimal numbers up to 3 decimal places	29
Subtracting decimal numbers up to 3 decimal places	30
Multiply decimal numbers by integers	31
Dividing decimal numbers by integers	32
Adding fractions	33
Subtracting fractions	34
Multiplying fractions	35
Dividing fractions	36
Finding a fraction of a quantity	37
Finding a percentage of a quantity	38
Converting a fraction into a decimal and a percentage	39
Converting a decimal into a fraction and a percentage	40
Converting a percentage into a decimal and a fraction	41
Order of operations (BIDMAS)	42
Simplifying a ratio	43
Sharing a quantity in a ratio	44

Better Schools * Better Communities * Better Futures in Christ

Number bonds of 5, 6, 7, 8, 9 and 10

Example - Some of the number bonds of 10		
Concrete/Pictorial		Abstract
 Above we have 9 green cubes and 1 yellow cube which gives a total of 10 cubes. Above we have 8 green cubes and 2 yellow cubes which gives a total of 10 cubes.	9 1 10 Above we have a part whole bar model which shows that $9+1=10$ and $1+9$ $=10$ Above we have a tens frame with 8 red circles and 2 yellow circles which shows that $8+2=10$ and $2+8=10$	$\begin{aligned} & 9+1=10 \text { or } 1+9=10 \\ & 8+2=10 \text { or } 2+8=10 \end{aligned}$

Better Schools * Better Communities * Better Futures in Christ

Counting

Example $5+3$

Concrete/Pictorial
 $5+3=8$

buttonat5on the umber ine and then pace then count3 3paces ofter igitiw wich guvesthe the3smalerbuttonstotheright.This thes arswer8.

Usingthe number ine above. Statat5 5 ndo

Uing the buttors soover. Pace the ajger youtor wich sisthe answer.

Adding 1-digit numbers by regrouping

Better Schools * Better Communities * Better Futures in Christ

Adding 2-digit numbers using the column method

Better Schools * Better Communities * Better Futures in Christ

Adding 3-digit numbers using the column method

Subtracting ones

Example 4-2		
Concrete/Pictorial		Abstract
Start with 4 cupcakes. If we take away (or eat?) 2 of the cupcakes this leaves we with 2 cupcakes.	Start with 4 counters. If we take away 2 of the counters we are left with 2 counters.	$4-2=2$

Counting back

Example 7-3									
Concrete/Pictorial									Abstract
Represent 7 with the 7 circles on the left. Subtract 3 of the circles which leaves 4 circles.	Using the number line above. Start at 7 and then count 3 places to the left which gives the answer 4.								$7-3=4$ Start at 7 and then count 3 places to the left which gives

Subtracting 1 and 2-digit numbers to 20

Example 14-6		
Concrete/Pictorial		Abstract
		$\theta A=\theta=0$
For the 14 sticks, we have 1 bunch of 10 sticks and 4 single sticks. We untie the 1 bunch of 10 sticks so that we have 10 single sticks. We then subtract 6 single sticks which leaves us with 8 sticks.	Using the number line above. Start at 14 and then count 4 places to the left which takes you to 10 and then count another 2 places to the left which takes you to 8. Alternatively, count 6 places to the left in one step to take you to 8.	Start at 14 and then count 6 places to the left which gives the answer 8.

Better Schools * Better Communities * Better Futures in Christ

Subtracting 2-digit numbers using the column method

Example 65-28		
Concrete/Pictorial		Abstract
For the 65 sticks, we have 6 bunches of 10 sticks and 5 single sticks. So that we can subtract all the single sticks, we need to exchange 1 bunch of 10 sticks for 10 single sticks. We can then subtract 28 sticks (2 bunches of 10 sticks and 8 single sticks) which leaves 37 sticks (3 bunches of 10 sticks and 7 single sticks).	Represent 65 in the place value chart above as 6 tens and 5 ones. So that we can subtract all the ones, we need to exchange 1 of the tens for 10 ones. We can then subtract 28 (2 tens and 8 ones) which leaves 3 tens and 7 ones to give the answer 37 .	? Line up the digits starting with the ones column on the right and then moving left to the tens column. In the ones column, we can't subtract 8 from 5 . Therefore, we exchange 1 of the tens from the tens column for 10 ones. We can then do 15-8 to give 7 ones. In the tens column, we now have 5 tens -2 tens $=3$ tens $=30$. This gives the final answer 37.

Better Schools * Better Communities * Better Futures in Christ

Subtracting 3-digit numbers using the column method

Example 435-273		
Concrete/Pictorial		Abstract
Hundreds Tens Ones O/I 		$-$$4+4$ 5 0 3 3 5 2 7 3 1 5 2
Represent 435 using diene blocks in the place value chart above. We have 4 hundred blocks, 3 ten blocks and 5 one blocks. We can subtract 3 one blocks from the ones column to leave 2 one blocks. So that we can subtract 7 ten blocks from the tens column, we need to exchange 1 of the hundred blocks in the hundreds column for 10 ten blocks. We can then subtract 7 ten blocks from 13 ten blocks to leave 6 ten blocks. We can then subtract 2 hundred blocks from the hundreds column to leave 1 hundred block. This gives the final answer 162.	Represent 435 in the place value chart above as 4 hundreds, 3 tens and 5 ones. We can subtract 3 ones from the ones column to leave 2 ones. So that we can subtract 7 tens from the tens column, we need to exchange 1 of the hundreds in the hundreds column for 10 tens. We can then subtract 7 tens from 13 tens to leave 6 tens. We can then subtract 2 hundreds from the hundreds column to leave 1 hundred. This gives the final answer 162.	Line up the digits starting with the ones column on the right and then moving left to the tens and hundreds columns. In the ones column, do $5-3=2$ ones. In the tens column, we can't subtract 7 tens from 3 tens. Therefore, we exchange 1 of the hundreds from the hundreds column for 10 tens. We can then do 13 tens -7 tens $=6$ tens $=60$. In the hundreds column, we now have 3 hundreds 2 hundreds = 1 hundred $=100$. This gives the final answer 162.

Multiplying 1-digit numbers

Example 4×5		
Concrete/Pictorial		Abstract
Represent 4×5 with 4 bags each containing 5 apples. Calculate 4 lots of 5 or $5+5+5+5$ both giving the answer 20.	Represent 4×5 using the number line above. Calculate 4 lots of 5 or $5+5+5+5$ both giving the answer 20 .	$4 \times 5=20$ Multiplication is commutative i.e. $4 \times 5=5 \times 4=20$

Better Schools * Better Communities * Better Futures in Christ

Multiplying a 2-digit number by a 1-digit number

using the column method

Multiplying a 3-digit number by a 2-digit number

using the column method

Example $234 \times$								
Concrete/Pictorial				Abstract				
(100) Represent the numbers 234 and 32 using the place value counters above. $234=2$ hundreds +3 tens +4 ones and $34=3$ tens +2 ones. So that the multiplications are in the same order as the column method we start with the bottom row. 2 ones $\times 4$ ones $=8$ ones, 2 ones $\times 3$ tens $=2 \times 30=60=6$ tens and 2 ones $\times 2$ hundreds $=2 \times 200=400=4$ hundreds. So this gives 468 . We then move to the top row. 3 tens $\times 4$ ones $=30 \times 4=120$. We exchange the 120 for 1 hundred and 2 tens We then do 3 tens $\times 3$ tens $=30 \times 30=900=9$ hundreds. We then add on the 1 hundred already there which gives 10 hundreds. We exchange 10 hundreds for 1 thousand. We then do 3 tens $\times 2$ hundreds $=30 \times 200=6000=6$ thousands. We then add on the 1 thousand already in the thousands column to give 7 thousands. So this gives 7020. We then add 468 and 7020 using the column method shown earlier which gives the answer 7488.				\boldsymbol{T} 1 T 0 2 3 4 x 3 2 4 6 8 17 10 2 0 7 4 8 8 Line up the digits starting with the ones column on the right and then moving left to the tens and hundreds columns. Start by multiplying 234 by 2 . This give 2 ones $\times 4$ ones $=8$ ones, 2 ones $\times 3$ tens $=2 \times 30=60=6$ tens and 2 ones $\times 2$ hundreds $=2 \times$ $200=400=4$ hundreds. So this gives 468 . We now multiply 234 by 30 . This gives 3 tens $\times 4$ ones $=30 \times 4=120$. We exchange the 120 for 1 hundred, 2 tens and 0 ones. We write 0 in the ones column, 2 in the tens column and a small 1 in the hundreds column. We then do 3 tens $\times 3$ tens $=30 \times 30=900=9$ hundreds. We then add on the 1 hundred already in the hundreds column to give 10 hundreds. We exchange 10 hundreds for 1 thousand. We write 0 in the hundreds column and a small 1 in the thousands column. We then do 3 tens $\times 2$ hundreds $=30 \times 200=6000=6$ thousands. We then add on the 1 thousand already in the thousands column to give 7 thousands. So this gives 7020 . We then add 468 and 7020 using the column method shown earlier which gives the answer 7488.				
				Line up the digits starting with the ones column on the right and then moving left to the tens and hundreds columns. Start by multiplying 234 by 2 . This give 2 ones $\times 4$ ones $=8$ ones, 2 ones $\times 3$ tens $=2 \times 30=60=6$ tens and 2 ones $\times 2$ hundreds $=2 \times$ $200=400=4$ hundreds. So this gives 468 . We now multiply 234 by 30 . This gives 3 tens $\times 4$ ones $=30 \times 4=120$. We exchange the 120 for 1 hundred, 2 tens and 0 ones. We write 0 in the ones column, 2 in the tens column and a small 1 in the hundreds column. We then do 3 tens $\times 3$ tens $=30 \times 30=900=9$ hundreds. We then add on the 1 hundred already in the hundreds column to give 10 hundreds. We exchange 10 hundreds for 1 thousand. We write 0 in the hundreds column and a small 1 in the thousands column. We then do 3 tens $\times 2$ hundreds $=30 \times 200=6000=6$ thousands. We then add on the 1 thousand already in the thousands column to give 7 thousands. So this gives 7020 . We then add 468 and 7020 using the column method shown earlier which gives the answer 7488 .				
				Line up the digits starting with the ones column on the right and then moving left to the tens and hundreds columns. Start by multiplying 234 by 2 . This give 2 ones $\times 4$ ones $=8$ ones, 2 ones $\times 3$ tens $=2 \times 30=60=6$ tens and 2 ones $\times 2$ hundreds $=2 \times$ $200=400=4$ hundreds. So this gives 468 . We now multiply 234 by 30 . This gives 3 tens $\times 4$ ones $=30 \times 4=120$. We exchange the 120 for 1 hundred, 2 tens and 0 ones. We write 0 in the ones column, 2 in the tens column and a small 1 in the hundreds column. We then do 3 tens $\times 3$ tens $=30 \times 30=900=9$ hundreds. We then add on the 1 hundred already in the hundreds column to give 10 hundreds. We exchange 10 hundreds for 1 thousand. We write 0 in the hundreds column and a small 1 in the thousands column. We then do 3 tens $\times 2$ hundreds $=30 \times 200=6000=6$ thousands. We then add on the 1 thousand already in the thousands column to give 7 thousands. So this gives 7020 . We then add 468 and 7020 using the column method shown earlier which gives the answer 7488.				

Bishop Chadwick

Multiplying a 2-digit number by a 2-digit number using the grid method

Better Schools * Better Communities * Better Futures in Christ

Dividing by using the sharing method

Example $20 \div 5$						
Concrete/Pictorial						Abstract
Represent the division with 20 apples shared equally between 5 people. As can be seen above, each person would receive 4 apples	? Repres above. the bar be equa			the ents en	model If we split part will	$20 \div 5=4$

Dividing by using the grouping method

Example $20 \div 5$							

Better Schools * Better Communities * Better Futures in Christ

Dividing a 2-digit number by a 1-digit number using the sharing method

Dividing a 2 -digit number by a 1-digit number using the sharing method (with a remainder)

Example $53 \div 4$		
Concrete/Pictorial		Abstract
 Represent $53 \div 4$ using diene blocks in the place value chart above. The 5 ten blocks and 3 one blocks are initially at the top of the diagram. We're going to share out the number into 4 equal rows. We start by sharing the 5 ten blocks by 4 which gives us 1 ten block in each row with 1 ten block left over. We exchange the 1 ten block left over for 10 one blocks (placed at the top). This now gives 13 one blocks. We then share the 13 one blocks by 4 which gives us 3 one blocks in each row with 1 one block left over. Therefore we have 1 ten block and 3 one blocks in each of the 4 rows with 1 one left over. Therefore the answer is 13 rem 1 .	Represent $53 \div 4$ using the place value chart above. The 5 tens and 3 ones are initially at the top of the diagram. We're going to share out the number into 4 equal rows. We start by sharing the 5 tens by 4 which gives us 1 ten in each row with 1 ten left over. We exchange the 1 ten left over for 10 ones (placed at the top). This now gives 13 ones. We then share the 13 ones by 4 which gives us 3 ones in each row with 1 one left over. Therefore we have 1 ten and 3 ones in each of the 4 rows with 1 left over. Therefore the answer is 13 rem 1.	As can be seen above, we can split 53 into the sum of 2 numbers (40 and 13) where the 40 can be divided exactly by 4. $40 \div 4=10$ We then split 13 into the sum of 2 numbers (12 and 1) where 12 can be divided exactly by 4. $12 \div 4=3$ We have 1 left over. Therefore, the final answer is 13 rem 1

Dividing a 3-digit number by a 1-digit number by short division using the grouping method

Example $536 \div 4$	
Concrete/Pictorial	Abstract
Represent $536 \div 4$ in the place value chart above. 536 means 5 hundreds, 3 tens and 6 ones. Start by dividing the 5 hundreds into groups of 4 . As you can see we can make 1 group of 4 hundreds with 1 hundred left over. Exchange the 1 hundred left over for 10 tens. This now gives us 13 tens in the tens column. We now divide the 13 tens into groups of 4. As you can see we can make 3 groups of 4 tens with 1 ten left over. Exchange the 1 ten left over for 10 ones. This now gives 16 ones in the ones column. Finally we divide the 16 ones into groups of 4 ones which gives us 4 groups. Therefore we have 1 group of 4 hundreds, 3 groups of 4 tens and 4 groups of 4 ones so the answer is 134.	Represent $536 \div 4$ as above often called the bus stop method. Start by dividing the 5 hundreds into groups of 4. We can make 1 group of 4 hundreds with 1 hundred left over. Write the first 1 hundred in the hundreds column on the answer line and exchange the 1 hundred left over for 10 tens. This now gives us 13 tens in the tens column. We now divide the 13 tens into groups of 4 . We can make 3 groups of 4 tens with 1 ten left over. Write the first 3 tens in the tens column on the answer line and exchange the 1 ten left over for 10 ones. This now gives 16 ones in the ones column. Finally we divide the 16 ones into groups of 4. We can make 4 groups of 4 ones which we write in the ones column on the answer line. This gives the answer 134.

Better Schools * Better Communities * Better Futures in Christ

Dividing a 3-digit number by a 2-digit number by short division and using the grouping method

las

Better Schools * Better Communities * Better Futures in Christ

Bishop Chadwick
Catholic Education Trust

Dividing a 3-digit number by a 2-digit number by long division and using the grouping method

Example $432 \div 12$	
Concrete/Pictorial	Abstract
Represent 432 in the place value chart above. 432 means 4 hundreds, 3 tens and 2 ones. Start by trying to divide the 4 hundreds into groups of 12. As this can't be done, we exchange the 4 hundreds for 40 tens so that we now have 43 tens in the tens column. We now divide the 43 tens into groups of 12 . We can make 3 groups of 12 tens which equals 36 tens $=360$. Our next step is to work out $432-360$ which will tell us what we still need to divide by 12 . If we cross out 36 tens (360) this leaves us with 7 tens and ones which is 72 . As we can't divide 7 tens into groups of 12 we exchange the 7 tens for 70 ones so that we have 72 ones. We can make 6 groups of 12 ones. This gives the answer 36 .	$4+2$ 3 5 4 3 5 Start by trying to divide the 4 hundreds into groups of 12. As this can't be done, we write 0 in the hundreds column on the answer line and exchange the 4 hundreds for 40 tens so that we now have 43 tens in the tens column. We now divide the 43 tens into groups of 12 . We can make 3 groups of 12 tens. Write the 3 tens in the tens column on the answer line. We now work out 12×3 tens $=12 \times 30=360$ and write this underneath the 432. Our next step is to work out $432-360$ which will tell us what we still need to divide by $12.432-360=72.72$ is 7 tens and 2 ones. As we can't divide 7 tens into groups of 12 we exchange the 7 tens for 70 ones so that we have 72 ones. We can make 6 groups of 12 ones. We write 6 ones in the ones column on the answer line. We now work out 6×12 ones $=6 \times 12=72$ and we write this underneath the 72 . We then do $72-72=0$. This means we have no more dividisions to do. This gives the answer 36 .

Better Schools * Better Communities * Better Futures in Christ

Adding and subtracting positive and negative numbers

Concrete/Pictorial	Abstract
	When you add a positive number, you move to the right on the number line. For this example, start at -4 and move 5 places right which gives the answer 1.
	When you subtract a positive number, you move to the left on the number line. For this example, start at 4 and move 6 places left which gives the answer-2.
Represent 2 with 2 yellow positive counters and the -7 with 7 red negative counters. 1 yellow positive counter and 1 red negative counter makes a zero pair. We can therefore see that when we add the counters we get the answer -5.	$\begin{aligned} & 2+-7 \\ = & 2-7 \\ = & -5 \end{aligned}$ Adding a negative number is the same as subtracting. For this example, adding negative 7 is the same as subtracting 7.
We start with 5 yellow positive counters. We need to subtract 3 red negative counters but we don't have any red negative counters. However, what we can do is add on 3 zero pairs as can be seen in the diagram. Now we can subtract -3 by taking away the 3 red negative counters which leaves us with 8 yellow positive counters so the answer is 8.	$\begin{aligned} & 5--3 \\ = & 5+3 \\ = & 8 \end{aligned}$ Subtracting a negative number is the same as adding. For this example, subtracting negative 3 is the same as adding 3.

Multiplying positive and negative numbers

If the signs are the same, the answer is positive. If the signs are different, the answer is negative.

Concrete/Pictorial			Abstract
positive \times positive $=$ positive			$3 \times 4=12$
positive \times negative $=$ negative		The diagram shows 3 columns of 4 red negative counters which gives a total of 12 red negative counters which gives the answer - 12 .	$3 \times-4=-12$
negative X positive $=$ negative		The diagram shows 4 rows of 3 red negative counters which gives a total of 12 red negative counters which gives the answer-12.	$-3 \times 4=-12$
negative \times negative $=$ positive	$\left.\begin{array}{c} -3 \times 2=-6 \\ -3 \times 1=-3 \\ -3 \times 0=0 \\ -3 \times 13=3 \\ -3 \times 2 \\ -3 \times-3=6 \\ -3 \times-3=9 \\ -3 \times 12 \end{array}\right\} \begin{aligned} & +3 \\ & +3 \\ & +3 \\ & +3 \end{aligned}$	We know from above that negative number x positive number $=$ negative number. If we follow the pattern on the left we can see that negative x negative must be positive and $-3 \times-4=12$	$-3 \times-4=12$

Better Schools * Better Communities * Better Futures in Christ

Dividing positive and negative numbers

 different, the answer is negative.

concret		Abstract
positive \div positive $=$ posititive		$\begin{gathered} \text { As } 3 \times 4=12 \\ 12 \div 3=4 \end{gathered}$
positive \div negative $=$ negative		$\begin{gathered} \text { As }-3 \times-4=12 \\ 12 \div-3=-4 \end{gathered}$
negative \div positive $=$ negative		$\begin{gathered} \text { As } 3 \times-4=-12 \\ -12 \div 3=-4 \end{gathered}$
negative \div negative $=$ positive		$\begin{gathered} \text { As }-3 \times 4=-12 \\ -12 \div-3=4 \end{gathered}$

Better Schools * Better Communities * Better Futures in Christ

Adding decimal numbers up to 3 decimal places

Better Schools * Better Communities * Better Futures in Christ

Subtracting decimal numbers up to 3 decimal places

Example 5.43-2.7		
Concrete/Pictorial		Abstract
Ones Tenths Hundredths O		
Represent 5.43 using place value counters in a place value chart. So 5.43 is represented by 5 ones, 4 tenths and 3 hundredths. In the hundredths column, 3 hundredths - 0 hundredths $=3$ hundredths In the tenths column, we can't subtract 7 tenths from 4 tenths. Therefore, we exchange 1 whole one for 10 tenths. We then do 14 tenths -7 tenths $=7$ tenths. In the ones column, do 4-2 = 2 ones = 2 This gives the final answer $2 \cdot 73$.	Represent 5.43 using decimal place value counters in a place value chart. So $5 \cdot 43$ is represented by 5 ones, 4 tenths ($0 \cdot 4$) and 3 hundredths (0.03). In the hundredths column, 3 hundredths - 0 hundredths $=3$ hundredths $=0.03$ In the tenths column, we can't subtract 7 tenths ($0 \cdot 7$) from 4 tenths ($0 \cdot 4$). Therefore, we exchange 1 whole one for 10 tenths. We then do 14 tenths (1-4) - 7 tenths ($0 \cdot 7$) $=7$ tenths ($0 \cdot 7$) In the ones column, do $4-2=2$ ones $=2$ This gives the final answer $2 \cdot 73$.	Line up the digits starting with the hundredths column on the right and moving left to the tenths and ones columns. Fill in any gaps with zeros. Make sure that the decimal point lies between the ones and tenths columns. In the hundredths column, do 3 hundredths - 0 hundredths $=3$ hundredths. In the tenths column, we can't subtract 7 tenths from 4 tenths. Therefore, we exchange 1 whole one for 10 tenths. We then do 14 tenths -7 tenths $=7$ tenths. In the ones column, do 4-2 = 2 ones $=2$ This gives the final answer 2.73.

Better Schools * Better Communities * Better Futures in Christ

Multiplying decimal numbers by integers

Better Schools * Better Communities * Better Futures in Christ

Dividing decimal numbers by integers

Better Schools * Better Communities * Better Futures in Christ

Adding fractions

Subtracting fractions

Better Schools * Better Communities * Better Futures in Christ
Bishop Chadwick

Multiplying fractions

Dividing fractions

Example $3 \div \frac{1}{4}$

Example $\quad 3 \div \frac{1}{4}$	
Concrete/Pictorial	Abstract
1 1 1 $\frac{1}{4}$ Represent $3 \div \frac{1}{4}$ using the part whole bar model above. Each whole bar on the top row is split into 4 quarters in the bottom row. We can see that 4 quarters divide into each whole one. Therefore, we can see that 12 quarters (3×4) divide into 3 whole ones. Therefore the answer is 12.	$3 \div \frac{1}{4}$ We can start by working out how many $\frac{1}{4}$ divide into 1 which is 4 . We can then work out how many $\frac{1}{4}$ divide into 3 by doing 3×4 which gives the answer 12 . A rule that you can use here is that dividing by a fraction is the same as multiplying by its reciprocal e.g. $\frac{1}{5} \div \frac{2}{3}=\frac{1}{5} \times \frac{3}{2}=\frac{3}{10}$

Better Schools * Better Communities * Better Futures in Christ

Finding a fraction of a quantity

$$
\text { Example } \frac{2}{5} \text { of } 30
$$

Concrete/Pictorial	Abstract
6 6 6 6 6 12 Represent the number 30 using the bar model above. To work out $\frac{1}{5}$ of 30 we need to split the bar model into 5 equal parts. Each part is equal to $30 \div 5$ $=6$. For $\frac{2}{5}$ of 30 we need 2 of the 5 parts so we do 6×2 which gives us the answer 12 .	$\frac{2}{5} \text { of } 30$ We first of all need to find $\frac{1}{5}$ of 30 by doing $30 \div 5=6$. Then we find $\frac{2}{5}$ of 30 by doing 6×2 which gives us the answer 12 .

Finding a percentage of a quantity

Examples Find 15\% of 80	
Concrete/Pictorial	Abstract
8 4 4 8 8 8 8 8 8 8 7 8 $10 \% 5 \%$ Represent 80 by the bar model above. Split the bar into 10 equal parts so each part represents 10%. Each 10% part is equal to $80 \div 10=8$. We can find 5% by halving one of the 10% parts so $1 / 2$ of $8=4$. Therefore to find 15% we add together the 10% and 5% parts which is $8+4=$ 12	Find 15\% of 80 10% of $80=80 \div 10=8$ 5% of $80=1 / 2$ of $8=4$ 15% of $80=8+4=12$ Some other percentages that are useful to know are To find 50% of a quantity we divide by 2 To find 40% of a quantity we multiply 10% by 4 To find 1% of a quantity we divide by 100 To find 3% of a quantity we divide by 100 and multiply by 3

Better Schools * Better Communities * Better Futures in Christ

Converting a fraction into a decimal and a

 percentage

Better Schools * Better Communities * Better Futures in Christ

Converting a decimal into a fraction and a

percentage

Better Schools * Better Communities * Better Futures in Christ

Converting a percentage into a decimal and a fraction

Better Schools * Better Communities * Better Futures in Christ

Order of Operations (BIDMAS)

Example $5 \times(6-2)^{2}$	
Concrete/Pictorial	Abstract
Represent BIDMAS in the triangle above. $5 \times(6-2)^{2}$ Do the bracket first $=5 \times 4^{2}$ Do the index number next $=5 \times 16$ Finally do the multiplication $=80$	Work out $5 \times(6-2)^{2}$ We use the word BIDMAS where BIDMAS stands for Brackets, Indices, Division, Multiplication, Addition, Subtraction. $5 \times(6-2)^{2}$ Do the bracket first $=5 \times 4^{2}$ Do the index number next $=5 \times 16$ Finally do the multiplication $=80$

Better Schools * Better Communities * Better Futures in Christ

Simplifying a ratio

Example Simplify the ratio 10:35					Abstract
Represent the ratio $10: 35$ with the 10 red balls and 35 blue balls above. We find the biggest number that divides exactly into both 10 and 35 which is 5 . Therefore, we arrange both the red balls and blue balls into 5 rows. We can see that each row has 2 red balls and 7 blue balls. In other words, if you have 10 red balls and 35 blue balls that means for every 2 red balls you will have 7 blue balls. Therefore, $10: 35$ can be simplified to $2: 7$.	We start by finding the biggest number that divides exactly into both 10 and 35 (which is called the highest common factor). That number is 5 . $10 \div 5=2$ $35 \div 5=7$ So $10: 35$ simplifies to 2:7.				

Better Schools * Better Communities * Better Futures in Christ

Sharing a quantity in a ratio

Example Share $£ \mathbf{2 4}$ into the ratio 3:5	
Concrete/Pictorial	Abstract
Represent this question using bar models. We start by drawing 3 boxes for the first share and 5 boxes for the second share as can be seen above. This gives us 8 boxes altogether. To work out what each box is equal to we need to do $£ 24 \div 8=£ 3$. Therefore, the first share is $3 \times £ 3=£ 9$ Therefore, the second share is $5 \mathrm{x} £ 3=£ 15$. Therefore the answer is $£ 9: £ 15$.	Share $£ 24$ into the ratio 3:5 The first share is 3 parts of the ratio and the second share is 5 parts of the ratio. We start by adding 3 parts and 5 parts which gives us 8 parts in total To work out what each part is equal to we need to do $£ 24 \div 8=$ £3. Therefore, the first share is $3 x £ 3$ = $£ 9$ Therefore, the second share is 5 x $£ 3=£ 15$. Therefore the answer is $£ 9: £ 15$.

Better Schools * Better Communities * Better Futures in Christ

